
Blocks in Space: Intelligent Self-Assembly Using
Optimal Control Trajectory Planning

Ella M. Atkins, Gina D. Moylan

University of Maryland, Space Systems Laboratory
382 Technology Drive, College Park, MD, 20740

{ella | gmoylan} @ssl.umd.edu

Abstract
Many different layers of automation must be integrated to
support future space missions. At the base layer, spacecraft
must autonomously navigate; i.e., follow a specified
trajectory using the spacecraft’s actuators, sensors and
knowledge of its dynamics. This trajectory must minimize
precious fuel use and satisfy mission goals and
environmental constraints. To facilitate an appropriate
connection between task and optimal trajectory planning,
we map the well-known Blocks World domain to the space
environment by defining a simple task-level implementation
that uses cost information from an optimal trajectory
planner to make action choices. Our method is applicable at
both the micro-level where obstacles must be efficiently
circumvented and the macro-level where orbital dynamics
dictate assembly task sequencing and trajectory design.

Introduction
Imagining a child stacking blocks on the floor is a pleasant
exercise many people can relate to. Placing these same
blocks in the space environment and having them self-
assemble into particular “stacked” configurations is
anything but child’s play. When considering the necessary
role automation must play in future space missions and
endeavors, it is important to study basic scenarios that
further our understanding of the challenges we must
overcome to meet such objectives. We believe some of
these challenges lie in the inherent disconnect between the
planning of tasks and the development of the continuous
trajectories that must be followed to accomplish these
tasks. Before any other mission tasks/goals can be
prioritized and fulfilled, spacecraft must be able to
autonomously navigate; i.e., follow a specified trajectory
using the spacecraft’s actuators, sensors and knowledge of
its dynamics. To be clear, we make an important
distinction between path and trajectory:

• A path is the locus of waypoints followed during

motion; i.e., a purely geometric motion description.
• A trajectory is a path that includes velocities and/or

accelerations at each point according to the governing
equations of motion; i.e., a geometric and temporal
description of the object’s motion.

Mission goals are fulfilled by selecting action choices that
optimize fuel use and time given system and
environmental constraints. While these action choices can
be easily implemented with traditional AI planning tools,
the optimization of the fuel/time resources required to
move through space requires consideration of system
dynamics and actuation capabilities involving complex
physical motions governed by nonlinear differential
equations. Optimal trajectory planners are specifically
designed for this task, connecting spatial waypoints with a
physically-achievable trajectory. However, they are not
designed to optimize over a global assembly problem
involving a large number of choices in terms of what gets
assembled, when and where (Henshaw, 2003). Full
automation—especially in a space environment—must
involve the coordination of intelligent task and motion
planning.

The problem we address in this paper is set within the
context of the famous microworld domain known as
“Blocks World” (BW), where an infinite table holds a
finite set of unique blocks to be stacked in particular
configurations (Slaney and Thiébaux, 2001):

Problem Definition: A group of 4 self-actuating
blocks are deployed so that they are in approximately
the same orbit but have slightly different positions.
From an initial ‘snapshot,’ the goal is to build a linear
4-block structure in a fuel-optimal ‘stacking
arrangement’ using block-a as the anchor block
(see Figure 1).

y

x

z

1

1

0.5 0 -0.5 -1

0.5

0

-0.5

1.5
22.533.5

3.5

3

2.5

2

1.5

-0.5

0

0.5

1

1.5

a

b

c

d

Figure 1: Initial local distribution of blocks.

Typical BW predicates such as Stack(a,b) are changed
to operators like Dock(a,b) and so forth, with the
“table” being the orbit in which the configuration resides.
In our problem there is no robotic arm moving the blocks
about as they are presumed self-actuated by thrusters
located on each face.

The merit of considering ‘simple’ problems like these in
terms of integrating sound trajectory planning and task
planning components becomes apparent as the action
choices of the problem scale (Cambon et al., 2003). It is
also fundamental when one considers the many layers of
reasoning required to perform even relatively mundane
tasks in the complex harsh environment of space. By
presenting the AI task planner with appropriate costs in
terms of minimizing fuel use, the time-to-completion, and
proximity to obstacles (for safety considerations), the
trajectory planner relieves the task planner of the full
representational details of block locations/motion that
would typically overwhelm it, making optimal solutions
prohibitive (Smith et al., 2000). Instead, the task planner
uses cost values computed by the trajectory planner to
influence decisions related to the optimal completion of the
block docking sequence.

We lay the groundwork for facilitating a connection
between AI task planning and optimal trajectory planning,
after a brief discussion of related work, by defining a
space-based symbolic domain representation of BW. We
then present the system architecture and its component
algorithms followed by results for the four-block assembly
problem. The results are contrasted with assembly
constructions in flat-space and in a central gravitational
field (Keplerian model). We conclude with future work to
extend our models/algorithms and to practically implement
this system for space-based construction activities.

Some Related Work
This work embodies two main themes: self-assembly and
the integration of task and optimal trajectory planning.
There is a broad range of work encompassing many
aspects of the self-assembly mechanics and automation
required by this problem (Jones and Matarić, 2003; Suh et
al., 2001; Shen, 2001; Butler and Rus, 2001; Shen et al.,
2000; Rus and Vona, 1999). Some approaches focus on
distributing path-planning and actuation within the
system—developing a parallel local awareness (Butler and
Rus, 2001), while others focus on global strategies. Both
are needed in the space environment where the
optimization of limited resources directly impacts mission
success. To this end, either strategy requires the careful
planning of the trajectories executed in the self-assembly
process. One can think of this in other important contexts,
such as assembling waypoints to meet military objectives
or reconnaissance goals (Petterson and Doherty, 2004).

While there is much work on either problem there remains
the persistent gap between the language we use for
symbolic reasoning and that used for controlling
autonomous motion. This ‘gap’ is beginning to be
recognized and pursued.

Domain Description
BW is a generic domain where the blocks are
representations of objects—be they freight, transportation
devices, building materials, atoms, etc. The combination
of abstraction and the basic premise of moving and
assembling these “blocks” in particular configurations
lends itself well to the problem of self-assembly.

Mapping BW to a 3D space environment necessitates a
paradigm shift in the traditional representation of the
‘infinite table.’ Instead of a table on which all of the
blocks—be they ‘free’ or part of a tower—reside, we
introduce the notion of a ‘target table’ that will be the orbit
in which the blocks are assembled. Blocks in other orbits
may be considered free or on ‘virtual tables.’ Full 3D
construction with local and global assembly entails such
details as:
• Moving and docking/undocking block superstructures,

changing the system dynamics
• Docking in any orbit
• Building structures with ‘non-reachable’ or variable

configurations (e.g., cubic docking with an open center
for unique configurations)

Before embracing these details, we have chosen to begin
with a constrained construction that disambiguates block
states and more closely mirrors the traditional BW
paradigm—i.e., the construction of towers or linear
assemblies relative to a specific anchor block freely
drifting in space. This provides a simplified baseline from
which to add the necessary details for unconstrained 3D
construction in future work.

PDDL Domain Model
To provide a framework for discussion and to lend some
familiarity for those experienced with BW planning, we
define a 3D BW domain with a PDDL v.2.1 (Fox and
Long, 2003) representation (see Figure 2), making the
following assumptions for linear self-assemblies:

1. Blocks have two specific faces (+y,-y) to which any

other block may dock.
2. Actions occur sequentially—only one block may be

docked/undocked to/from another block at any time.
3. Only one connected structure may be assembled.

Figure 2: 3D BW problem PDDL representation

4. Blocks either drift as part of the assembly or are free to

maneuver, in which case they cannot be connected
(docked) to any other block.

5. Spacecraft (blocks) have sufficient fuel for maneuvers
and will always execute actions accurately.

6. All blocks are uniquely labeled. They may be
interchangeable to allow random placement (as in our
example), or they may have specific configuration
requirements.

To achieve a goal sequence a set of constructive actions is
performed given certain preconditions. When a
constructive move is not possible the problem is in a
‘deadlocked’ state, necessitating the movement of some
block before a constructive move is possible. Efficient
search strategies employ methods to minimize the number
of deadlocks encountered—i.e., backtracking (Slaney and
Thiébaux, 2001). In this work, all moves are constructive.
However, because optimal solutions are computationally
expensive, there is an algorithmic tradeoff of efficiency for

optimality due to the nature of the problem as discussed in
the following section.

Architecture
In order to facilitate an appropriate link between task and
trajectory planning, it was important to design an
architecture (see Figure 3) that retained the dynamical state
information for each planning state (search node) while
keeping this information hidden—i.e., in a “black box”—
from the task planner. For this initial implementation, a
primitive C++ “task planner” interprets the PDDL domain
(see Figure 2) and conducts an optimal search in which the
“translator function” is invoked to acquire the cost J of the
instantiated action by interfacing with a Matlab-based
optimal trajectory planner (Henshaw, 2003). The task
planner uses a uniform cost (Dijkstra's) search strategy
with actual node n cost, g(n), set to the cost of the parent
node plus additional cost J of transitioning from the parent
to node n. Transition costs J (see Equation 2) are
computed during the trajectory planning process for each
action. The focus of the current task planner’s

(define (domain blocks-in-space)
 (:requirements :equality)
(:predicates
 (block ?b) ; ?b is a block
 (orbit ?o) ; ?o is an orbit
 (face ?f) ; ?f is a block face
 (in-orbit ?b ?o) ; block ?b is in orbit ?o
 (clear ?b ?f) ; face ?f of block ?y is clear (undocked)
 (docked ?b1 ?f1 ?b2 ?f2) ; face ?f1 of block ?b1 is docked to face ?f2 of block ?b2
 (assembled ?b) ; block ?b is part of the single assembled structure
 (free ?b)) ; block ?b is free to move and not assembled; both faces of ?b are clear

(:action insert ; insert ?block1 residing in ?orbit1 into ?orbit2
 :parameters (?block1 ?orbit1 ?orbit2)
 :precondition (and (block ?block1) (free ?block1) (orbit ?orbit1) (orbit ?orbit2)
 (in-orbit ?block1 ?orbit1))
 :effect (and (in-orbit ?block1 ?orbit2) (not (in-orbit ?block1 ?orbit1))))

(:action dock ; move free ?block1 so that its ?face1 docks to ?face2 of anchor ?block2
 :parameters (?block1 ?face1 ?block2 ?face2)
 :precondition (and (block ?block1) (block ?block2) (face ?face1) (face ?face2) (free ?block1)
 (clear ?block2 ?face2) (assembled ?block2) (not (= ?face1 ?face2)))
 :effect (and (docked ?block1 ?face1 ?block2 ?face2) (assembled ?block1)
 (not (clear ?block1 ?face1)) (not (clear ?block2 ?face2)) (not (free ?block1))))

 (:action undock ; move ?block1 to undock from anchor ?block2
 :parameters (?block1 ?face1 ? ?block2 ?neg-face2)
 :precondition (and (docked ?block1 ?face1 ?block2 ?face2) (clear ?block1 ?neg-face)))
 :effect (and (free ?block1) (clear ?block1 ?face1) (clear ?block2 ?face2)
 (not (docked ?block1 ?face1 ?block2 ?face2)) (not (assembled ?block1)))))
(define (problem assemble-four-blocks)
 (:domain blocks-in-space)
 (:objects block-a, block-b, block-c, block-d, pos-y, neg-y, target-orbit)
 (:init (block block-a) (block block-b) (block block-c) (block block-d) (face neg-y)
 (face pos-y) (in-orbit block-a target-orbit) (in-orbit block-b target-orbit)
 (in-orbit block-c target-orbit) (in-orbit block-d target-orbit) (clear block-a pos-y)
 (clear block-a neg-y) (clear block-b pos-y) (clear block-b neg-y) (clear block-c pos-y)
 (clear block-c neg-y) (clear block-d pos-y) (clear block-d neg-y)
 (assembled block-a) (free block-b) (free block-c) (free block-d))

implementation is the information communicated between
task and trajectory planners. We therefore discuss this
communication and the design of the trajectory planner in
more depth below.

Figure 3: System Architecture

Task Planner and Translator Function
The task planner begins its search for an optimal block
assembly sequence by using the knowledge base’s initial
full-state ‘snapshot’ zk,o for all blocks k of the recently
deployed system. A node queue is then constructed, with
children of the initial root node formed from actions acn
and parameter bindings parn that are able to preferentially
achieve a subgoal or the set of actions (acn,parn) that meet
all preconditions of acn if no subgoals can be directly
achieved. For each uniform cost node expansion the queue
must be ordered by total path cost, g(n).

The translator function is then called to compute the cost J
of transitioning from each parent to child node. The
translator passes the continuous state zk,o for all blocks
directly to the trajectory planner. Based on the zk,o and the
action (acn,parn) to be executed, the translator also
computes the final (goal) state (b2zb1)f to be achieved as the
product of executing action acn. For all BW actions, b1 is
the block to be moved and b2 is the anchor block or target
orbit to which b1 must maneuver. By expressing position
vector (b2zb1)f in b2 coordinates (indicated by the leading
b2 superscript), the translator computes b1 goal positions
relative to its drifting target (b2), allowing maneuver time
to be optimized by the trajectory planner rather than
specified in advance. In the general case where all blocks
drift over time (freely or in a gravitational field), all blocks
will move as the trajectory for each acn is executed,
requiring that the final state zk,f of all blocks after executing
acn be stored as the initial state “snapshot” for the offspring
of node n. Should node n be part of the optimal solution,
the optimal trajectory zb1(t) for maneuvering block b1 is
archived along with the cost J returned by the translator as
the cost of executing action (acn,parn).

This might appear a lengthy computational process for
such a simple assembly activity (Cambon et al, 2003).

However, as we discuss below, incorporating complex
dynamics is the only way to ensure optimal solutions
worthy of space applications.

Trajectory Planner
Traditional trajectory planning strategies used in terrestrial
applications for rover locomotion, etc., need to be
supplemented to accommodate the unique challenges of
navigating spacecraft. To navigate a free path from point
A to point B without intersecting any obstacles, cell
decomposition and roadmap methods such as Voronoi
diagrams, etc. are usually employed with varying degrees
of success (Latombe, 1991). However, when dealing with
spacecraft one must take into account:
• Limited fuel resources/maneuverability,
• Possible encounter(s) with a wide range of obstacle

operating velocities,
• Dynamic thruster constraints,
• Varied endpoint constraints/operating times.

Traditional methods fall short of meeting these dynamic
constraints (Henshaw, 2003). This is especially realized
when contrasting a relative ‘straight-line’ trajectory in flat
space with the same trajectory in a central gravitational
field as presented below. Additionally, the self-assembly
of blocks in both environments requires the transfer of
blocks from one orbit to another. For circular orbits, the
optimal global planning strategy for maneuvering blocks to
a target orbit is a straightforward Hohmann transfer (Miele
et al., 2004).

To fully address these challenges we chose a trajectory
planning algorithm specifically designed to solve end-to-
end orbital docking problems involving both orbital
maneuvering and proximity operations using realistic
saturating thrusters (Henshaw, 2003). Robust numerical
methods and the use of Calculus of Variations allows the
planner to develop a cost functional that penalizes fuel use,
obstacle clearance distance, and arrival time while
enforcing dynamic orbital constraints. Six degree of
freedom paths are found by deriving Euler-Lagrange
equations corresponding to the cost functional, then
solving the associated boundary value problem using
collocation (implemented with the Levenberg-Marquardt
algorithm) and continuation techniques, allowing for the
optimization of arrival time and fuel use. To avoid error
effects, a feedback control algorithm was implemented
(using Pontryagin’s minimum principle).

The 6-DOF dynamic equations for the moving vehicle are:

 (1)

[]

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
−−

0
)(

0
/)()(

)(
)(

/

)(11

3

t

mt

S
t

τ

σ

ωσ
ωω

µ

σ
ω

σ

H

uR

G
HH

v
pp

p
v

z

&

&

&

&

&

Knowledge
Base (PDDL)

Task
Planner

Trajectory
Planner

Dynamics,
Obstacles,

Cost Function

Translator
Function

()
nknn kparac 0,,, z∀ ()fkkJ ,],[z∀⋅

() ()0,1
2 , kfb

b k zz ∀ ()fkb kJt ,1],[),(zz ∀⋅

where:
p is vehicle position relative to the anchor/target1
v is vehicle translational velocity relative to the target
σ is a modified Rodrigues vector (a 3-element vector
representing vehicle attitude without singularities)
ω is the rotational rate vector in the body frame
m is vehicle mass,
H is the rotational inertial matrix,
R(σ) is a rotation matrix that converts body to inertial
coordinates,
S the matrix representation of cross product ω×H
Gσ(σ) is the dynamic equation for the Rodrigues vector
u(t) is the force vector produced by saturating thrusters
τ(t) is the limited torque vector.

To generate the desired trajectory, a cost functional is
minimized subject to the dynamic constraint,)(tz& :

 (2)

where:
 f(z,ν,τ) represents vehicle dynamics from Eq. (1)
Lcontrol[z,ν,τ] penalizes control effort—fuel use
Lobstacle[z] penalizes obstacle clearance distance
Ltime penalizes completion time

Finally, the boundary conditions, specified by the
Translator (see Figure 3), are defined by the initial state in
each search node and the final waypoint computed from
the initial state and choice of task to execute. Although the
translator need not specify time of arrival at the final state,
motion of the target must be known as a function of arrival
time which is reasonable given the target vehicle’s natural
orbital motion. The BW domain as defined for this work
specifies trajectory planning problems with fixed arrival
locations and either fixed or free arrival times, allowing a
relatively simple form of the transversality boundary
condition () 0=⋅αL to hold.

4-block Assembly Results
The 4-block linear assembly problem defined in Figure 2
was cast in a circular equatorial orbit (target-orbit)
with an orbital radius of 6767.06km (388.92km above the
Earth). All blocks/modules had edge length 0.2 km, and
the faces were presumed tangent (no separation) when
docked.2 Table 1 lists each block’s initial position pi(0)

1 The docking target block (or target orbit) may be in motion, but this
motion must be modeled a priori—a reasonable assumption for insertion
into a known orbit or docking to a controlled spacecraft.
2 Each “block” has rather enormous dimensions for our example. Such
size and separation distance values were chosen to simultaneously
illustrate the effects of obstacle avoidance and orbital dynamics on cost
without modeling significantly more than four blocks.

relative to anchor block-a and inertial orientation R(σ).
Initial block relative velocities and angular
velocities/accelerations were assumed zero since all blocks
approximately occupy the same orbit.

Table 1: Initial block locations
Block-i pi(0) (km) R(σ)

block-a (0.0, 0.0, 0.0) (0.0, 0.0, 1.0)
block-b (1.0, 2.5, 1.0) (0.0, 0.0, 1.0)
block-c (2.0, 1.5, 0.0) (0.0, 0.0, 1.0)
block-d (3.0, 3.0, 1.5) (0.0, 0.0, 1.0)

Before examining the full 4-block planning process, we
motivate the use of the full-state trajectory planner by
examining a single action: (dock block-d neg-y
block-a pos-y) with only the block-d and
block-a positions shown in Table 1—i.e., no other
blocks acting as obstacles. The optimal trajectory and cost
were compared for the dock conducted in flat-space (no
gravity) where a simpler path planner might suffice, with
the same problem in the circular orbit specified above.

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

-1
-0.5

0
0.51

1.5
2

2.5
33.5

-0.5

0

0.5

1

1.5

y

x

z

z0

zf

0

0

-0.5 -1 -1.5 -2

-0.5

-1

-1.5

0.5
11.522.5

2.5

2

1.5

1

0.5

block-a

Figure 4: Paths with gravity (black) versus flat-space
(grey) models.

A comparison of paths and force profiles for the two cases
is shown in Figure 5. Although the physical paths through
space do not differ greatly, there is substantial difference in
cost. As shown in Figure 4, the force at any given time is
nearly two orders of magnitude higher for the solution with
gravity, however, this difference is mitigated to some
extent by the reduced time to dock, thereby also lowering
the time over which gravitational forces act on the block.
Without gravity, the range of single docking operations for
the four blocks with initial states given by Table 1
exhibited minimal difference in assembly cost.
Conversely, tasks executed with the gravitational model
had cost that varied by up to 80% for different docking
tasks.

[] [] [] ()()∫ +++=⋅ f

o

t

t

T
timeobstaclecontrol dtvfLLvLJ τλτ ,,,, zzz

Figure 5: Comparative force plots for (dock d -y a -y)

Next we ran the planner (search engine) with the blocks in
their circular orbit. A representation of the full search-
space is shown in Figure 5 along with the total cost for a
number of complete paths through the search space. This
4-block example had branching factors 6, 4, and 2 at search
levels 1, 2, and 3, respectively, representing the possible
combinations of dock operations each unassembled block
could achieve. The optimal plan was computed to be: 1)
(dock block-b neg-y block-a pos-y) (cost
J=4.67E3), 2) (dock block-c neg-y block-b pos-
y) (J=5.91E3), then 3) (dock block-d neg-y block-
c pos-y) (J=2.29E4), with total assembly cost

g=3.35E4. Note that not all Level 2 or 3 nodes were
actually expanded with the uniform cost engine; select cost
data is provided to illustrate the search-space and facilitate
assembly structure and cost comparison.

For non-optimal assemblies, there was a significant range
of individual docking task costs: a minimum = 4.67E3
(part of the optimal plan), a maximum = 7.78E4, and an
average = 2.25E4. Further, the same final assembly
structure does not ensure consistent cost (e.g., assembly c-
a-b-d in Figure 4). As discussed in Section 3.2, the
trajectory planner may return a different cost for the same
final assembly based on obstacle avoidance requirements,
illustrating the importance of task ordering choices for an
optimal assembly.

The layout of this 4-block problem was chosen to
demonstrate the functionality of our system and to clearly
illustrate the need for the integration of task and trajectory
planning. However, this integration comes at the cost of
computational time; not uncommon to systems needing
any degree of trajectory or even path planning fidelity
(Pettersson and Doherty, 2004). The worst runs need over
an hour to compute, becoming cumbersome, or even
prohibitive, as the number of assembly sequences scales
with the number of blocks. Even with this computational
burden, there are ways to mitigate the necessity of running
all assembly possibilities in the trajectory planner. Making
use of selective cost information, combining global and
local assembly strategies, and incorporating pre-processing
that uses system dynamics to deliver intelligent, best guess
cost estimates are some of the ways the system can work in
both offline and online capacities.

Level 1 (complete):
1 = (dock b -x a +x)

2 = (dock c -x a +x)

3 = (dock d -x a +x)

4 = (dock b +x a -x)

5 = (dock c +x a -x)

6 = (dock d +x a -x)

OPTIMAL SOLUTION:
4 = (dock b +x a –x)

Level 2 (partial):
1-1 = (dock c +x a -x)
1-2 = (dock d +x a -x)
1-3 = (dock c -x b +x)
1-4 = (dock d -x b +x)

6-1 = (dock b -x a +x)
6-2 = (dock c -x a +x)
6-3 = (dock b +x d -x)
6-4 = (dock c +x d -x)

4-3 = (dock c +x b -x)

Level 3 (partial):
1-1a = (dock d -x b +x)
1-1b = (dock d +x c -x)

1-4a = (dock c +x a -x)
1-4b = (dock c -x d +x)

6-1a = (dock c -x b +x)
6-1b = (dock c +x d -x)

6-4a = (dock b -x a +x)
6-4b = (dock b +x c -x)

4-3b = (dock d +x c -x)

…

…

…

Final structure
c-a-b-d

d-c-a-b

c-a-b-d
a-b-d-c

d-a-b-c
c-d-a-b

c-d-a-b
b-c-d-a

d-c-b-a

Total assembly cost
4.25E4
1.025E5

5.03E4
4.27E4

5.96E4
7.37E4

7.37E4
9.47E4

3.35E4

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1000

2000

3000

4000

time (sec)

fo
rc

e
(N

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

20

30

40

50

60

time (sec)

fo
rc

e
(N

)

a) Force (magnitude) vs. time with gravitational effects

b) Force (magnitude) vs. time with no gravity (flat space)

Figure 5: Four-block linear assembly search-space and assembly costs

Conclusions and Future Work
Intelligent in-space self-assembly requires careful
integration of task-level and physics-based reasoning
systems. We have argued that assembly task planning
necessarily requires the incorporation and knowledge of
complex system dynamics in the overall task
planning/sequencing strategy. A framework for
establishing a connection between an optimal control
trajectory planner and task planner in this domain was
established, from which we presented a simple assembly
problem that clearly illustrated the need for a trajectory
planner designed to work with continuous dynamical
system models of in-space assembly problems as well as a
task planner to propose action sequences that will
successfully achieve assembly goals.

This work began with planning algorithms and a PDDL
model designed for a small set of blocks and sequential
assembly choices due to the computationally-intensive
planning processes involved. Its primary contribution lies
in the integration of optimal task and trajectory planners,
specifically the knowledge representation and interface
language that enable the task planner to manage complex
trajectories while processing only a small set of symbolic
features and a single measure of cost for each planning
state. A secondary contribution is the PDDL 3D BW
domain definition (Figure 2). Although a sophisticated
trajectory planner is already in place, a more capable task
planner will be required to increase search efficiency and
enable parallel, multi-tasked activity schedules—an
important capability when many “blocks” are assembled.

Our aim for future work is to improve algorithmic
efficiency by utilizing (admissible) heuristics to reduce
search-space size while maintaining optimality and
expanding the task planner to handle parallel assembly task
execution. The architecture and BW representation
presented builds a foundation on which both AI and
control systems researchers can build such extensions.

References
A. Miele, M. Ciarcià, J. Mathwig. 2004. “Reflections on
the Hohmann Transfer,” Journal of Optimization Theory
and Applications Vol. 123, Issue 2, pp. 233 – 253.
Stéphane Cambon, Fabien Gravot and Rachid Alami.
2004. “A Robot Task Planner that Merges Symbolic and
Geometric Reasoning,” Proceedings of the 16th Annual
Conference on Artificial Intelligence, Spain.
Pettersson, P-O., Doherty, P. 2004. “Probabilistic
Roadmap Based Path Planning for Autonomous
Unmanned Aerial Vehicles,” Proceedings of the 14th
International Conference on Automated Planning and
Scheduling.

Chris Jones and Maja J. Matarić. 2003. “From Local to
Global Behavior in Intelligent Self-Assembly,”
Proceedings of the IEEE International Conference on
Robotics and Automation.
R. Lampariello, S. Agrawal, G. Hirzinger. 2003. “Optimal
Motion Planning for Free-Flying Robots,” International
Conference on Robotics and Automation, Taiwan.
Fox, M. and Long, D. 2003. “PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains,”
Journal of Artificial Intelligence Research 20, pp. 61-124.
Henshaw, C.G. 2003. “A Variational Technique for
Spacecraft Trajectory Planning,” PhD Dissertation:
Department of Aerospace Engineering, University of
Maryland College Park.
John W. Suh, Samuel B. Homans and Mark Yim. 2002.
“Telecubes: Mechanical Design of a Module for Self-
Reconfigurable Robotics,” Proceedings of the 2002 IEEE
International Conference on Robotics and Automation,
Washington DC.
Jacobsen, S., Lee, C., Zhu, C., and Dubowsky, S. 2002.
"Planning of Safe Kinematic Trajectories for Free Flying
Robots Approaching an Uncontrolled Spinning Satellite"
Proceedings of the ASME 27th Annual Biennial
Mechanisms and Robotics Conference, Montreal.
John Slaney and Sylvie Thiébaux, “Blocks World
Revisited,” Artificial Intelligence, 125, pp. 119-153, 2001.
Wei-Min Shen. 2001. “Metamorphic Robotic Systems for
Space Exploration,” ICASE/USRA/LaRC Workshop On
Revolutionary Aerospace Systems Concepts for
Human/Robotic Exploration of the Solar System.
Zack Butler and Daniela Rus. 2001. “Distributed motion
planning for 3D modular robots with unit-compressible
modules,” Proceedings of the Internnational Conference on
Intelligent Robots and Systems.
Wei-Min Shen , Yimin Lu , Peter Will. 2000. “Hormone-
based control for self-reconfigurable robots,” Proceedings
of the Fourth International Conference on Autonomous
Agents, Barcelona.
David E. Smith, Jeremy Frank, and Ari Jónsson. 2000.
“Bridging the Gap Between Planning and Scheduling,”
Knowledge Engineering Review 15(1).
Daniela Rus & Marsette Vona. 1999. Self-reconfiguration
Planning with Compressible Unit Modules,” Proceedings
of the 1999 IEEE International Conference on Robotics
and Automation.
J. Scott Penberthy and Daniel S.Weld. 1994. “Temporal
Planning with Continuous Change,” AAAI.
Jean-Claude Latombe. 1991. Robot Motion Planning,
Kluwer.

